
Package: queuecomputer (via r-universe)
September 9, 2024

Title Computationally Efficient Queue Simulation

Version 1.2.0

Description Implementation of a computationally efficient method for
simulating queues with arbitrary arrival and service times.
Please see Ebert, Wu, Mengersen & Ruggeri (2020,
<doi:10.18637/jss.v095.i05>) for further details.

Depends R (>= 3.6)

License GPL-2 | file LICENSE

Encoding UTF-8

Imports stats, Rcpp, tidyr, dplyr, utils

RoxygenNote 7.3.2

Suggests knitr, rmarkdown, testthat, ggplot2

VignetteBuilder knitr

LinkingTo Rcpp, RcppArmadillo (>= 0.7.500.0.0)

URL https://github.com/AnthonyEbert/queuecomputer

Copyright file COPYRIGHTS

Repository https://anthonyebert.r-universe.dev

RemoteUrl https://github.com/anthonyebert/queuecomputer

RemoteRef HEAD

RemoteSha 97c3bfdb36da76b83383cfa86f8ad0b51ab71131

Contents
as.server.list . 2
as.server.stepfun . 3
average_queue . 4
depart . 4
lag_step . 5
plot.queue_list . 6
print.summary_queue_list . 7

1

https://doi.org/10.18637/jss.v095.i05
https://github.com/AnthonyEbert/queuecomputer

2 as.server.list

ql_summary . 8
queue . 8
queue_lengths . 9
queue_step . 11
summary.queue_list . 12
wait_step . 13

Index 15

as.server.list Creates a "server.list" object from a list of times and starting
availability.

Description

Creates a "server.list" object from a list of times and starting availability.

Usage

as.server.list(times, init)

Arguments

times list of numeric vectors giving change times for each server.

init vector of 1s and 0s with equal length to times. It represents whether the server
starts in an available (1) or unavailable (0) state.

Value

an object of class "server.list", which is a list of step functions of range {0, 1}.

See Also

as.server.stepfun, queue_step

Examples

Create a server.list object with the first server available anytime before time 10,
and the second server available between time 15 and time 30.
as.server.list(list(10, c(15,30)), c(1,0))

as.server.stepfun 3

as.server.stepfun Create a server.stepfun object with a roster of times and number of
available servers.

Description

Create a server.stepfun object with a roster of times and number of available servers.

Usage

as.server.stepfun(x, y)

Arguments

x numeric vector giving the times of changes in number of servers.

y numeric vector one longer than x giving the number of servers available between
x values.

Details

This function uses the analogy of a step function to specify the number of available servers through-
out the day. It is used as input to the queue_step function. Alternatively one may use as.server.list
to specify available servers as a list, however queue_step is much faster when as.server.stepfun
is used as input rather than as.server.list.

If any of the service times are large compared to any element of diff(x) then the as.server.list
function should be used.

Value

A list and server.stepfun object with x and y as elements.

See Also

as.server.list, queue_step, stepfun.

Examples

servers <- as.server.stepfun(c(15,30,50), c(0, 1, 3, 2))
servers

4 depart

average_queue Compute time average queue length

Description

Compute time average queue length

Usage

average_queue(times, queuelength)

Arguments

times numeric vector of times

queuelength numeric vector of queue lengths

Examples

n <- 1e3
arrivals <- cumsum(rexp(n))
service <- rexp(n)
departures <- queue(arrivals, service, 1)

queuedata <- queue_lengths(arrivals, service, departures)
average_queue(queuedata$times, queuedata$queuelength)

depart get departure times from queue_list object

Description

get departure times from queue_list object

Usage

depart(x)

Arguments

x an queue_list object

Value

departure times

lag_step 5

Examples

arrivals <- cumsum(rexp(10))
service <- rexp(10)
queue_obj <- queue_step(arrivals, service)

depart(queue_obj)
queue_obj$departures_df$departures

lag_step Add lag to vector of arrival times.

Description

Add lag to vector of arrival times.

Usage

lag_step(arrivals, service)

Arguments

arrivals Either a numeric vector or an object of class queue_list. It represents the
arrival times.

service A vector of service times with the same ordering as arrivals

Value

A vector of response times for the input of arrival times and service times.

See Also

wait_step, queue_step.

Examples

Create arrival times
arrivals <- rlnorm(100, meanlog = 3)

Create service times
service <- rlnorm(100)
lag_step(arrivals = arrivals, service = service)

lag_step is equivalent to queue_step with a large number of queues, but it's faster to compute.

cbind(queue(arrivals, service = service, servers = 100),
lag_step(arrivals = arrivals, service = service))

6 plot.queue_list

plot.queue_list ggplot2 method for output from queueing model

Description

ggplot2 method for output from queueing model

Usage

S3 method for class 'queue_list'
plot(x, which = c(2:6), annotated = TRUE, ...)

Arguments

x an object of class queue_list

which Numeric vector of integers from 1 to 6 which represents which plots are to be
created. See examples.

annotated logical, if TRUE annotations will be added to the plot.

... other parameters to be passed through to plotting functions.

Examples

Not run:

n_customers <- 50
arrival_rate <- 1.8
service_rate <- 1
arrivals <- cumsum(rexp(n_customers, arrival_rate))
service <- rexp(n_customers, service_rate)
queue_obj <- queue_step(arrivals, service, servers = 2)
plot(queue_obj)

library(ggplot2)

density plots of arrival and departure times
plot(queue_obj, which = 1)

histograms of arrival and departure times
plot(queue_obj, which = 2)

density plots of waiting and system times
plot(queue_obj, which = 3)

step function of queue length
plot(queue_obj, which = 4)

print.summary_queue_list 7

line range plot of customer and server status
plot(queue_obj, which = 5)

empirical distribution plot of arrival and departure times
plot(queue_obj, which = 6)

End(Not run)

print.summary_queue_list

Print method for output of summary.queue_list.

Description

Print method for output of summary.queue_list.

Usage

S3 method for class 'summary_queue_list'
print(x, ...)

Arguments

x an object of class summary_queue_list, the result of a call to summary.queue_list().

... further arguments to be passed to or from other methods.

Value

A list of performance statistics for the queue:

"Total customers": Total customers in simulation,

"Missed customers": Customers who never saw a server,

"Mean waiting time": The mean time each customer had to wait in queue for service,

"Mean response time": The mean time that each customer spends in the system (departure time -
arrival time),

"Utilization factor": The ratio of available time for all servers and time all servers were used. It can
be greater than one if a customer arrives near the end of a shift and keeps a server busy,

"Mean queue length": Average queue length, and

"Mean number of customers in system": Average number of customers in queue or currently being
served.

8 queue

Examples

n <- 1e3
arrivals <- cumsum(rexp(n, 1.8))
service <- rexp(n)

queue_obj <- queue_step(arrivals, service, servers = 2)
summary(queue_obj)

ql_summary Summarise queue lengths

Description

Summarise queue lengths

Usage

ql_summary(times, queuelength)

Arguments

times numeric vector of times

queuelength numeric vector of queue lengths

Examples

n <- 1e3
arrivals <- cumsum(rexp(n))
service <- rexp(n)
departures <- queue(arrivals, service, 1)

queuedata <- queue_lengths(arrivals, service, departures)
ql_summary(queuedata$times, queuedata$queuelength)

queue Compute the departure times for a set of customers in a queue from
their arrival and service times.

Description

queue is a faster version of queue_step but the input returned is much simpler. It is not compatible
with the summary.queue_list method or the plot.queue_list method.

Usage

queue(arrivals, service, servers = 1, serveroutput = FALSE)

queue_lengths 9

Arguments

arrivals numeric vector of non-negative arrival times

service numeric vector of non-negative service times

servers a non-zero natural number, an object of class server.stepfun or an object of
class server.list.

serveroutput boolean whether the server used by each customer should be returned.

Details

If the arrival vector is out of order the function will reorder it. The same reordering will be applied
to the service vector, this is so each customer keeps their service time. Once the queue is computed
the original order is put back.

See Also

queue_step

Examples

n <- 1e2
arrivals <- cumsum(rexp(n, 1.8))
service <- rexp(n)

departures <- queue(
arrivals, service, servers = 2)

head(departures)
curve(ecdf(departures)(x) * n,

from = 0, to = max(departures),
xlab = "Time", ylab = "Number of customers")

curve(ecdf(arrivals)(x) * n,
from = 0, to = max(departures),
col = "red", add = TRUE)

queue_lengths Compute queue lengths from arrival, service and departure data

Description

Compute queue lengths from arrival, service and departure data

Usage

queue_lengths(arrivals, service = 0, departures, epsilon = 1e-10, ...)

10 queue_lengths

Arguments

arrivals vector of arrival times

service vector of service times. Leave as zero if you want to compute the number of
customers in the system rather than queue length.

departures vector of departure times

epsilon numeric small number added to departures to prevent negative queue lengths

... additional arguments - does nothing, for compatibility

Examples

library(dplyr)
library(queuecomputer)

set.seed(1L)
n_customers <- 100

queueoutput_df <- data.frame(
arrivals = runif(n_customers, 0, 300),
service = rexp(n_customers)

)

queueoutput_df <- queueoutput_df %>% mutate(
departures = queue(arrivals, service, servers = 2)

)

queue_lengths(
queueoutput_df$arrivals,
queueoutput_df$service,
queueoutput_df$departures

)

The dplyr way
queueoutput_df %>% do(

queue_lengths(.$arrivals, .$service, .$departures))

n_customers <- 1000

queueoutput_df <- data.frame(
arrivals = runif(n_customers, 0, 300),
service = rexp(n_customers),
route = sample(c("a", "b"), n_customers, TRUE)

)

server_df <- data.frame(
route = c("a", "b"),
servers = c(2, 3)

)

output <- queueoutput_df %>%
left_join(server_df) %>%

queue_step 11

group_by(route) %>%
mutate(

departures = queue(arrivals, service, servers = servers[1])
) %>%
do(queue_lengths(.$arrivals, .$service, .$departures))

if(require(ggplot2, quietly = TRUE)){
ggplot(output) +

aes(x = times, y = queuelength) + geom_step() +
facet_grid(~route)

}

queue_step Compute the departure times and queue lengths for a queueing system
from arrival and service times.

Description

Compute the departure times and queue lengths for a queueing system from arrival and service
times.

Usage

queue_step(arrivals, service, servers = 1, labels = NULL)

Arguments

arrivals numeric vector of non-negative arrival times

service numeric vector of service times with the same ordering as arrival_df.

servers a non-zero natural number, an object of class server.stepfun or an object of
class server.list.

labels character vector of customer labels (deprecated).

Details

If only departure times are needed, the queue function is faster.

Value

An list object of class queue_list with the following components:

• departures - A vector of response times for the input of arrival times and service times.

• server - A vector of server assignments for the input of arrival times and service times.

• departures_df - A data frame with arrivals, service, departures, waiting, system time, and
server assignments for each customer.

12 summary.queue_list

• queuelength_df - A data frame describing the evolution of queue length over time

• systemlength_df - A data frame describing the evolution of system length over time

• servers_input - A copy of the server argument

• state - A vector of availability times for the servers

See Also

queue, summary.queue_list, plot.queue_list

Examples

With two servers
set.seed(1)
n <- 100

arrivals <- cumsum(rexp(n, 3))
service <- rexp(n)

queue_obj <- queue_step(arrivals,
service = service, servers = 2)

summary(queue_obj)
plot(queue_obj, which = 5)

It seems like the customers have a long wait.
Let's put two more servers on after time 20

server_list <- as.server.stepfun(c(20),c(2,4))

queue_obj2 <- queue_step(arrivals,
service = service,
servers = server_list)

summary(queue_obj2)
if(require(ggplot2, quietly = TRUE)){

plot(queue_obj2, which = 5)

}

summary.queue_list Summary method for queue_list object

wait_step 13

Description

Summary method for queue_list object

Usage

S3 method for class 'queue_list'
summary(object, ...)

Arguments

object an object of class queue_list, the result of a call to queue_step.

... further arguments to be passed to or from other methods.

wait_step Compute maximum time for each row from two vectors of arrival
times.

Description

Compute maximum time for each row from two vectors of arrival times.

Usage

wait_step(arrivals, service)

Arguments

arrivals Either a numeric vector or an object of class queue_list. It represents the
arrival times.

service A vector of times which represent the arrival times of the second type of cus-
tomers. The ordering of this vector should have the same ordering as arrivals.

Details

A good real-world example of this is finding the departure times for passengers after they pick up
their bags from the baggage carousel. The time at which they leave is the maximum of the passenger
and bag arrival times.

Value

The maximum time from two vectors of arrival times.

See Also

lag_step, queue_step.

14 wait_step

Examples

set.seed(500)
arrivals <- rlnorm(100, meanlog = 4)
service <- rlnorm(100)

#Airport example ------------------------

Create a number of bags for each of 100 customers
bags <- rpois(100,1)

Create a bags dataframe, with each bag associated with one customer.
bags.df <- data.frame(BagID = 1:sum(bags),

ID = rep(1:100, bags), times = rlnorm(sum(bags), meanlog = 2))

Create a function which will return the maximum time from each customer's set of bags.

reduce_bags <- function(bagdataset, number_of_passengers){
ID = NULL
times = NULL

zerobags <- data.frame(BagID = NA, ID = c(1:number_of_passengers), times = 0)
reduced_df <- as.data.frame(dplyr::summarise(dplyr::group_by(
rbind(bagdataset, zerobags), ID), n = max(times, 0)))
ord <- order(reduced_df$ID)
reduced_df <- reduced_df[order(ord),]
names(reduced_df) <- c("ID", "times")
return(reduced_df)

}

arrivals2 <- reduce_bags(bags.df, 100)$times

Find the time when customers can leave with their bags.
wait_step(arrivals = arrivals, service = arrivals2)

Index

as.server.list, 2, 3
as.server.stepfun, 2, 3
average_queue, 4

depart, 4

lag_step, 5, 13

plot.queue_list, 6, 12
print.summary_queue_list, 7

ql_summary, 8
queue, 8, 11, 12
queue_lengths, 9
queue_step, 2, 3, 5, 9, 11, 13

stepfun, 3
summary.queue_list, 12, 12

wait_step, 5, 13

15

	as.server.list
	as.server.stepfun
	average_queue
	depart
	lag_step
	plot.queue_list
	print.summary_queue_list
	ql_summary
	queue
	queue_lengths
	queue_step
	summary.queue_list
	wait_step
	Index

